TooN Algorithm Library - tag  0.2
Public Member Functions | Public Attributes | List of all members
tag::ConstantPosition::Model Class Reference

#include <constantposition.h>

Collaboration diagram for tag::ConstantPosition::Model:
Collaboration graph

Public Member Functions

 Model (void)
 
TooN::Matrix
< State::STATE_DIMENSION > & 
getJacobian (const State &state, double dt)
 Jacobian has pos, rot in this order. More...
 
void updateState (State &state, const double dt)
 
TooN::Matrix
< State::STATE_DIMENSION > & 
getNoiseCovariance (double dt)
 
void updateFromMeasurement (State &state, const TooN::Vector< State::STATE_DIMENSION > &innovation)
 

Public Attributes

TooN::Vector
< State::STATE_DIMENSION
sigma
 describes the process noise as independent for each dimension of the state More...
 
TooN::Matrix
< State::STATE_DIMENSION
jacobian
 the jacobian of the process modell, here the identity More...
 
TooN::Matrix
< State::STATE_DIMENSION
noise
 the actual process noise matrix returned from the associated funcion More...
 

Detailed Description

The Model class implementing a constant position model. It will only update the covariance based on time passing, and update the state correctly from a measurement.

Constructor & Destructor Documentation

tag::ConstantPosition::Model::Model ( void  )
inline

References jacobian, noise, and sigma.

Member Function Documentation

TooN::Matrix<State::STATE_DIMENSION>& tag::ConstantPosition::Model::getJacobian ( const State state,
double  dt 
)
inline

Jacobian has pos, rot in this order.

References jacobian.

TooN::Matrix<State::STATE_DIMENSION>& tag::ConstantPosition::Model::getNoiseCovariance ( double  dt)
inline

References noise, and sigma.

void tag::ConstantPosition::Model::updateFromMeasurement ( State state,
const TooN::Vector< State::STATE_DIMENSION > &  innovation 
)
inline
void tag::ConstantPosition::Model::updateState ( State state,
const double  dt 
)
inline

Member Data Documentation

TooN::Matrix<State::STATE_DIMENSION> tag::ConstantPosition::Model::jacobian

the jacobian of the process modell, here the identity

Referenced by getJacobian(), and Model().

TooN::Matrix<State::STATE_DIMENSION> tag::ConstantPosition::Model::noise

the actual process noise matrix returned from the associated funcion

Referenced by getNoiseCovariance(), and Model().

TooN::Vector<State::STATE_DIMENSION> tag::ConstantPosition::Model::sigma

describes the process noise as independent for each dimension of the state

Referenced by getNoiseCovariance(), and Model().


The documentation for this class was generated from the following file: