TooN Algorithm Library - tag
0.2
|
Classes | |
struct | tag::Point4SE3Estimation< ImagePlaneZ > |
struct | tag::Homography |
struct | tag::AffineHomography |
struct | tag::CameraRotation |
struct | tag::PlaneFromPoints |
Functions | |
template<class Obs , class Trans , class Tol > | |
size_t | tag::find_RANSAC_inliers (const std::vector< Obs > &observations, const Tol &tolerance, size_t N, Trans &best, std::vector< bool > &inlier, int sample_size=Trans::hypothesis_size) |
template<class Obs , class Trans , class Tol > | |
size_t | tag::find_RANSAC_inliers (const std::vector< Obs > &observations, int sample_size, const Tol &tolerance, size_t N, Trans &best, std::vector< bool > &inlier) |
template<class Obs , class Trans , class Tol > | |
double | tag::find_MSAC_inliers (const std::vector< Obs > &observations, const Tol &tolerance, size_t N, Trans &best, std::vector< bool > &inlier, int sample_size=Trans::hypothesis_size) |
template<class Obs , class Trans , class Tol > | |
double | tag::find_MSAC_inliers (const std::vector< Obs > &observations, int sample_size, const Tol &tolerance, size_t N, Trans &best, std::vector< bool > &inlier) |
template<class Obs , class Trans , class Tol , class Prob > | |
size_t | tag::find_RANSAC_inliers_guided_breadth_first (const std::vector< Obs > &observations, const Prob &prob, const Tol &tolerance, size_t N, size_t block_size, Trans &best, std::vector< bool > &inlier, int sample_size=Trans::hypothesis_size) |
template<class Obs , class Trans , class Tol , class Prob > | |
size_t | tag::find_RANSAC_inliers_guided_breadth_first (const std::vector< Obs > &observations, const Prob &prob, int sample_size, const Tol &tolerance, size_t N, size_t block_size, Trans &best, std::vector< bool > &inlier) |
template<class Obs , class Trans , class Tol > | |
size_t | tag::find_RANSAC_inliers_breadth_first (const std::vector< Obs > &observations, const Tol &tolerance, size_t N, size_t block_size, Trans &best, std::vector< bool > &inlier, int sample_size=Trans::hypothesis_size) |
template<class Obs , class Trans , class Tol > | |
size_t | tag::find_RANSAC_inliers_breadth_first (const std::vector< Obs > &observations, int sample_size, const Tol &tolerance, size_t N, size_t block_size, Trans &best, std::vector< bool > &inlier) |
template<class T , class U > | |
void | tag::remove_if_false (std::vector< T > &v, const std::vector< U > &flag) |
This group contains a set of RANSAC implementations to estimate an inlier set from a set of correspondences under a transformation. The functions are both templated on the correspondence data type and the estimator for the transformation.
double tag::find_MSAC_inliers | ( | const std::vector< Obs > & | observations, |
const Tol & | tolerance, | ||
size_t | N, | ||
Trans & | best, | ||
std::vector< bool > & | inlier, | ||
int | sample_size = Trans::hypothesis_size |
||
) |
basic MSAC implementation. The function is templated on the observation data type and the transformation data type which must conform to the following interface:
see the file ransac_estimators.h for some Estimator classes for various transformations.
[in] | observations | a vector of observations (usually point matches) |
[in] | sample_size | the number of samples used estimate a transformation |
[in] | tolerance | the tolerance (passed with each observation) to the transformation to check for inliers |
[in] | N | the number of hypotheses to test |
[out] | best | the transformation hypothesis with the highest inlier count |
[out] | inlier | a vector of bools that describes the inlier set of the winning hypothesis |
References tag::randomTuple().
Referenced by tag::find_MSAC_inliers().
double tag::find_MSAC_inliers | ( | const std::vector< Obs > & | observations, |
int | sample_size, | ||
const Tol & | tolerance, | ||
size_t | N, | ||
Trans & | best, | ||
std::vector< bool > & | inlier | ||
) |
backwards compatibility interface to find_MSAC_inliers
References tag::find_MSAC_inliers().
size_t tag::find_RANSAC_inliers | ( | const std::vector< Obs > & | observations, |
const Tol & | tolerance, | ||
size_t | N, | ||
Trans & | best, | ||
std::vector< bool > & | inlier, | ||
int | sample_size = Trans::hypothesis_size |
||
) |
basic RANSAC implementation. The function is templated on the observation data type and the transformation data type which must conform to the following interface:
see the file ransac_estimators.h for some Estimator classes for various transformations.
[in] | observations | a vector of observations (usually point matches) |
[in] | sample_size | the number of samples used estimate a transformation |
[in] | tolerance | the tolerance (passed with each observation) to the transformation to check for inliers |
[in] | N | the number of hypotheses to test |
[out] | best | the transformation hypothesis with the highest inlier count |
[out] | inlier | a vector of bools that describes the inlier set of the winning hypothesis |
References tag::randomTuple().
Referenced by tag::find_RANSAC_inliers().
size_t tag::find_RANSAC_inliers | ( | const std::vector< Obs > & | observations, |
int | sample_size, | ||
const Tol & | tolerance, | ||
size_t | N, | ||
Trans & | best, | ||
std::vector< bool > & | inlier | ||
) |
backwards compatibility interface to find_RANSAC_inliers
References tag::find_RANSAC_inliers().
size_t tag::find_RANSAC_inliers_breadth_first | ( | const std::vector< Obs > & | observations, |
const Tol & | tolerance, | ||
size_t | N, | ||
size_t | block_size, | ||
Trans & | best, | ||
std::vector< bool > & | inlier, | ||
int | sample_size = Trans::hypothesis_size |
||
) |
Breadth-first RANSAC implementation. The function is templated on the observation data type, the tolerance for inliers, and the transformation data type which must conform to the following interface:
All hypotheses are generated first, and preemptively discarded as more observations are examined. see the file ransac_estimators.h for some Estimator classes for various transformations.
[in] | observations | a vector of observations (usually point matches) |
[in] | sample_size | the number of samples used estimate a transformation |
[in] | tolerance | the tolerance (passed with each observation) to the transformation to check for inliers |
[in] | N | the number of hypotheses to test |
[in] | block_size | the number of hypotheses to test in a block (between culling hypotheses) |
[out] | best | the transformation hypothesis with the highest inlier count |
[out] | inlier | a vector of bools that describes the inlier set of the winning hypothesis |
References tag::getShrinkRatio(), and tag::randomTuple().
Referenced by tag::find_RANSAC_inliers_breadth_first().
size_t tag::find_RANSAC_inliers_breadth_first | ( | const std::vector< Obs > & | observations, |
int | sample_size, | ||
const Tol & | tolerance, | ||
size_t | N, | ||
size_t | block_size, | ||
Trans & | best, | ||
std::vector< bool > & | inlier | ||
) |
backwards compatibility interface to find_RANSAC_inliers_breadth_first
References tag::find_RANSAC_inliers_breadth_first().
size_t tag::find_RANSAC_inliers_guided_breadth_first | ( | const std::vector< Obs > & | observations, |
const Prob & | prob, | ||
const Tol & | tolerance, | ||
size_t | N, | ||
size_t | block_size, | ||
Trans & | best, | ||
std::vector< bool > & | inlier, | ||
int | sample_size = Trans::hypothesis_size |
||
) |
Guided breadth-first RANSAC implementation. The function is templated on the observation data type, the probability density for observation correctness, the tolerance for inliers, and the transformation data type which must conform to the following interface:
All hypotheses are generated first, and preemptively discarded as more observations are examined. The sample sets for hypotheses are drawn probabilistically using the specified probability density. see the file ransac_estimators.h for some Estimator classes for various transformations.
[in] | observations | a vector of observations (usually point matches) |
[in] | prob | the probability predicate applied (as a function object) to each observation to compute its prior probability of being correct |
[in] | sample_size | the number of samples used estimate a transformation |
[in] | tolerance | the tolerance (passed with each observation) to the transformation to check for inliers |
[in] | N | the number of hypotheses to test |
[in] | block_size | the number of hypotheses to test in a block (between culling hypotheses) |
[out] | best | the transformation hypothesis with the highest inlier count |
[out] | inlier | a vector of bools that describes the inlier set of the winning hypothesis |
References tag::getShrinkRatio(), and tag::randomTuple().
Referenced by tag::find_RANSAC_inliers_guided_breadth_first().
size_t tag::find_RANSAC_inliers_guided_breadth_first | ( | const std::vector< Obs > & | observations, |
const Prob & | prob, | ||
int | sample_size, | ||
const Tol & | tolerance, | ||
size_t | N, | ||
size_t | block_size, | ||
Trans & | best, | ||
std::vector< bool > & | inlier | ||
) |
backwards compatibility interface to find_RANSAC_inliers_guided_breadth_first
References tag::find_RANSAC_inliers_guided_breadth_first().
void tag::remove_if_false | ( | std::vector< T > & | v, |
const std::vector< U > & | flag | ||
) |
helper function for use with ransac functions. It removes elements of an input vector based on another vector which is interpreted as boolean flags signaling removal from the first vector or not.
[in,out] | v | vector with data to remove |
[in] | flag | vector interpreted as flags, if false the corresponding element from v is removed |