TooN 2.1
|
Decomposes a positive-semidefinite symmetric matrix A (such as a covariance) into L*L^T, where L is lower-triangular. More...
#include <Lapack_Cholesky.h>
Public Member Functions | |
template<class P2 , class B2 > | |
Lapack_Cholesky (const Matrix< Size, Size, P2, B2 > &m) | |
Lapack_Cholesky (int size) | |
template<class P2 , class B2 > | |
void | compute (const Matrix< Size, Size, P2, B2 > &m) |
void | do_compute () |
int | rank () const |
template<int Size2, typename P2 , typename B2 > | |
Vector< Size, Precision > | backsub (const Vector< Size2, P2, B2 > &v) const |
template<int Size2, int Cols2, typename P2 , typename B2 > | |
Matrix< Size, Cols2, Precision, ColMajor > | backsub (const Matrix< Size2, Cols2, P2, B2 > &m) const |
template<int Size2, typename P2 , typename B2 > | |
Precision | mahalanobis (const Vector< Size2, P2, B2 > &v) const |
Matrix< Size, Size, Precision > | get_L () const |
Precision | determinant () const |
Matrix | get_inverse () const |
Decomposes a positive-semidefinite symmetric matrix A (such as a covariance) into L*L^T, where L is lower-triangular.
Also can compute A = S*S^T, with S lower triangular. The LDL^T form is faster to compute than the class Cholesky decomposition. The decomposition can be used to compute A^-1*x, A^-1*M, M*A^-1*M^T, and A^-1 itself, though the latter rarely needs to be explicitly represented. Also efficiently computes det(A) and rank(A). It can be used as follows:
// Declare some matrices. Matrix<3> A = ...; // we'll pretend it is pos-def Matrix<2,3> M; Matrix<2> B; Vector<3> y = make_Vector(2,3,4); // create the Cholesky decomposition of A Cholesky<3> chol(A); // compute x = A^-1 * y x = cholA.backsub(y); //compute A^-1 Matrix<3> Ainv = cholA.get_inverse();
Cholesky decomposition of a symmetric matrix. Only the lower half of the matrix is considered This uses the non-sqrt version of the decomposition giving symmetric M = L*D*L.T() where the diagonal of L contains ones
Size | the size of the matrix |
Precision | the precision of the entries in the matrix and its decomposition |