TooN 2.1
|
Performs SVD and back substitute to solve equations. More...
#include <TooN/GR_SVD.h>
Public Member Functions | |
template<class Precision2 , class Base > | |
GR_SVD (const Matrix< M, N, Precision2, Base > &A) | |
const Matrix< M, N, Precision > & | get_U () |
const Matrix< N, N, Precision > & | get_V () |
const Vector< N, Precision > & | get_diagonal () |
Precision | get_largest_singular_value () |
Precision | get_smallest_singular_value () |
int | get_smallest_singular_value_index () |
void | get_inv_diag (Vector< N > &inv_diag, const Precision condition) |
template<int Rows2, int Cols2, typename P2 , typename B2 > | |
Matrix< N, Cols2, typename Internal::MultiplyType < Precision, P2 >::type > | backsub (const Matrix< Rows2, Cols2, P2, B2 > &rhs, const Precision condition=1e9) |
template<int Size, typename P2 , typename B2 > | |
Vector< N, typename Internal::MultiplyType < Precision, P2 >::type > | backsub (const Vector< Size, P2, B2 > &rhs, const Precision condition=1e9) |
Matrix< N, M, Precision > | get_pinv (const Precision condition=1e9) |
void | reorder () |
Static Public Attributes | |
static const int | BigDim = M>N?M:N |
static const int | SmallDim = M<N?M:N |
Protected Member Functions | |
void | Bidiagonalize () |
void | Accumulate_RHS () |
void | Accumulate_LHS () |
void | Diagonalize () |
bool | Diagonalize_SubLoop (int k, Precision &z) |
Protected Attributes | |
Vector< N, Precision > | vDiagonal |
Vector< BigDim, Precision > | vOffDiagonal |
Matrix< M, N, Precision > | mU |
Matrix< N, N, Precision > | mV |
int | nError |
int | nIterations |
Precision | anorm |
Performs SVD and back substitute to solve equations.
This code is a c++ translation of the FORTRAN routine give in George E. Forsythe et al, Computer Methods for Mathematical Computations, Prentice-Hall 1977. That code itself is a translation of the ALGOL routine by Golub and Reinsch, Num. Math. 14, 403-420, 1970.
N.b. the singular values returned by this routine are not sorted. N.b. this also means that even for MxN matrices with M<N, N singular values are computed and used.
The template parameters WANT_U and WANT_V may be set to false to indicate that U and/or V are not needed for a minor speed-up.
void get_inv_diag | ( | Vector< N > & | inv_diag, |
const Precision | condition | ||
) |
Return the pesudo-inverse diagonal.
The reciprocal of the diagonal elements is returned if the elements are well scaled with respect to the largest element, otherwise 0 is returned.
inv_diag | Vector in which to return the inverse diagonal. |
condition | Elements must be larger than this factor times the largest diagonal element to be considered well scaled. |
Referenced by GR_SVD< M, N, Precision, WANT_U, WANT_V >::backsub(), and GR_SVD< M, N, Precision, WANT_U, WANT_V >::get_pinv().
Matrix<N,Cols2, typename Internal::MultiplyType<Precision,P2>::type > backsub | ( | const Matrix< Rows2, Cols2, P2, B2 > & | rhs, |
const Precision | condition = 1e9 |
||
) |
Calculate result of multiplying the (pseudo-)inverse of M by another matrix.
For a matrix , this calculates by back substitution (i.e. without explictly calculating the (pseudo-)inverse). See the detailed description for a description of condition variables.
References GR_SVD< M, N, Precision, WANT_U, WANT_V >::get_inv_diag().
Vector<N, typename Internal::MultiplyType<Precision,P2>::type > backsub | ( | const Vector< Size, P2, B2 > & | rhs, |
const Precision | condition = 1e9 |
||
) |
Calculate result of multiplying the (pseudo-)inverse of M by a vector.
For a vector , this calculates by back substitution (i.e. without explictly calculating the (pseudo-)inverse). See the detailed description for a description of condition variables.
References GR_SVD< M, N, Precision, WANT_U, WANT_V >::get_inv_diag().