
Real-time Video Annotations for Augmented Reality

Edward Rosten, Gerhard Reitmayr and Tom Drummond

Department of Engineering, University of Cambridge, Cambridge CB1 2PZ, UK
{er258|gr281|twd20}@cam.ac.uk

Abstract. Augmented reality (AR) provides an intuitive user interface to present
information in the context of the real world. A common application is to overlay
screen-aligned annotations for real world objects to create in-situ information
displays for users. While the referenced object’s location is fixed in the view the
annotating labels should be placed in such a way as to not interfere with other
content of interest such as other labels or objects in the real world. We present
a new approach to determine and track areas with less visual interest based on
feature density and to automatically compute label layout from this information.
The algorithm works in under 5ms per frame, which is fast enough that it can
be used with existing AR systems. Moreover, it provides flexible constraints for
controlling label placement behaviour to the application designer. The resulting
overlays are demonstrated with a simple hand-held augmented reality system for
information display in a lab environment.

1 Introduction

Augmented reality (AR) is an excellent user interface for mobile computing applica-
tions, because it supports an intuitive display of information. In an AR environment,
the user’s perception of the real world is enhanced by computer-generated entities such
as 3D objects, 2D overlays and 3D spatialised audio [1]. Interaction with these enti-
ties occurs in real-time providing natural feedback to the user. A common application
for augmented reality is information browsing. Annotations to real world objects are
presented to the user directly within the view of the environment. Typical example are
labels containing textual or pictorial information [2]. Such applications are especially
interesting in the context of mobile augmented reality, where a user can roam a large
area and subsequently request information on many objects.

(a) (b)

Fig. 1. A hand-held augmented reality system for information browsing using labels attached to
markers and “screen-stabilized” labels. The system determines the label locations in real-time in
such a way that overlap with interesting parts of the image is minimised.

2 Edward Rosten, Gerhard Reitmayr and Tom Drummond

Annotations can be general information displays such as heads-up displays that stay
in fixed locations on the screen. Or they may be associated with objects in the view and
appear close in the view. In the latter case they usually move with the objects or are
connected to them by follower-lines which make the user aware of the relationship.
However, placing annotations into the user’s view is not trivial. To avoid distraction an-
notations should not move or jitter. They should also not overlap scene features or each
other. Finally, readability of text annotations depends strongly on background colour
and texture.

Automatically placing annotations is more difficult. Models of the environment may
be limited to explicitly tracked objects and may not include a general description of the
environment. Even where such a world model exists, it usually cannot capture fine de-
tails that determine the background clutter in images. Also, the application model may
not even contain all possible objects of interests or have means to track them: for ex-
ample, a person walking into view can be considered interesting to the user and should
therefore not be occluded. However, mobile AR systems typically have no possibility
of tracking all persons or mobile objects they encounter. To create useable information
overlays in all such situations, image based methods are required.

To enable automated annotations for resource-constrained systems and unmodelled
environments, we present a new, fast method which finds visually uninteresting areas in
live video and hence determines candidate regions for label placement. The basic idea
is to describe the fitness of a certain label location in terms of the number of occluded
image features were the label to be placed in that location. The fitness distribution over
the entire image is computed from features detected in each frame and tracked in a
non-parametric filter framework over time (see section 3). Application designers can
further modify the fitness distribution for each label to enforce constraints (see section
4) such as proximity to a location in the image or placement in one of several distinct
locations such as image corners. The whole algorithm requires 5ms per frame (on a
1GHz Pentium-M) and is therefore suitable for real-time operation and integration into
more complex systems (such as mobile augmented reality applications) as demonstrated
in section 5.

2 Related work
Traditional label placement research has focused on the problem of arranging large
numbers labels on static display without overlap and unlimited computational time.
Moreover, complete information about the display and any constraints on the labels is
assumed as well. Many approaches exist and the Map-Labeling Bibliography [3] hosts
an extensive selection. A good overview of typical approaches is given by Christensen et
al. [4]. Azuma et al. [5] evaluate such label placement strategies for augmented reality
displays both statistically and with a user study. Our work supplements this work by
introducing a method to derive constraints for labels based on the visual content of
the view. Therefore, we are not concerned with overlap between labels themselves, but
rather with overlap of labels and interesting features of the environment. Once candidate
locations of labels are known, global label placement strategies could be employed to
reduce occlusion between labels.

Video annotations such as subtitles have been used for many years in the broad-
casting industry. Typically such annotations are placed offline in a manual process and

Lecture Notes in Computer Science 3

at fixed locations. In recent years, real time, world aligned annotations for sports casts
have become possible such as the display of the first down line in American football [6]
or live information for Nascar races [7]. These solutions rely on the accurate and expen-
sive tracking of camera parameters and accurate models of the environment and pixel
colours to achieve high precision. Moreover, manual fine-tuning by operators ensures
robustness of the systems.

Information browsing is a common application for augmented reality systems. Feiner
et. al [8] annotated persons and objects with application windows in an optical see-
through setting. The NaviCam [2] demonstrated labels for objects tracked with optical
fiducials. Simple rendering of annotations for multiple objects leads to clutter on the
screen and overlap between labels themselves and other objects of interest. One ap-
proach is to reduce the number of labels by applying a filtering scheme [9] to select
information based on properties of the tasks and the users as well as on proximity. An-
other promising approach is to directly manage the 2D display space and place labels
only in regions that are not interesting. Bell et al. [10] describe a view management
system that keeps track of free areas on the display. A 3D world model and tracking of
real objects is required to accurately project the objects and environment back into the
view and update the occupied areas as the user moves through the environment.

Other research investigates the properties of labels in augmented reality displays.
Gabbard et al. [11] compare user performance in reading differently coloured text labels
in optical see-through systems over various backgrounds. In contrast to that Leykin
and Tuceryan [12] use a machine learning approach to automatically determine the
readability of text over textured backgrounds. The information gained by classification
can be incorporated in to our method by providing additional constraints.

Automatic placement without knowledge of the environment was attempted by
Thanedar and Höllerer [13] to produce annotations for video sequences. Their approach
selects candidate regions based on image properties such as absence of motion and uni-
formity of colour. The location is optimised over a series of frames, also taking future
frames into account; it is therefore not suitable for real-time operation. In contrast to
this approach, our method is causal and sufficiently optimised that it can be used as an
additional component in a larger real-time system.

3 Tracking candidate locations

Our method finds uninteresting parts of the image in order to place labels without ob-
scuring interesting parts of the image. To do this, a distribution of feature density is
calculated in the current video frame. Areas with a high feature density are assumed
to contain information interesting to the user. Labels are placed in the frame such that
the integral of the density distribution over the label area is minimised. In principle any
feature detector could be used, for example the Harris [14] or SUSAN [15] detectors,
or even edgel detectors. In our experience, corner detectors yield visually better results
than edge detectors. Our method has a strong emphasis on low compute cost, so we use
the very efficient FAST feature detector, presented in Appendix A.

For each label to be placed in the image a placement cost distribution P (x, y) is
calculated in the following manner. We define P (x, y) to be the number of features
occluded by the label if the label is placed at x, y. Our implementation uses an integral

4 Edward Rosten, Gerhard Reitmayr and Tom Drummond

feature
detection

suitability score
S(x,y)

filter state F(x,y)

constrained
filter state

result

prior filter state
F (x,y)

constraint image
C(x,y)

(g)(a)

(b)

(c)

(d)

(e)

(f)

maximum

Fig. 2. Overview of the processing steps. (a) shows the detected features; the computed suitabil-
ity score (b) updates the prior filter state (c) to arrive at the current filter state (d); a constraint
image (e) is multiplied with it to compute the constrained filter state (f) and select the maxi-
mum location. (g) shows the resulting label placement. The maximum location is fed back to the
constraint image as a location prior for the next frame.

image [16] to quickly calculate this for each label. Locations with the lowest cost are
the best locations for labels. However, the placement cost distribution is sensitive to
noise. This can result local jitter of the optimal location or frequent large scale jumps if
several locations are near optimal. Both effects are undesirable and can be avoided by
filtering over time (see Fig.2 for an overview).

A non-parametric filter state Fn(x, y) describes the suitability of a location for plac-
ing a given label within a frame n. The location of the maximum of Fn(x, y), written
as (x, y), describes the optimal location for the label. The first step is to update the last
filter state for frame n − 1 with process noise by adding a constant c, yielding a prior
F−n (x, y). The prior is then updated with the suitability S(x, y), defined as

S(x, y) = 1− P (x, y)/max
x,y

(P (x, y)). (1)

Then we multiply the suitability score with the prior state and normalise by a factor z.
Therefore, the update step is

Fn(x, y) = F−n (x, y)S(x, y)/z. (2)

The location (x, y) of the maximum of the filter state Fn(x, y) at step n is then
used as the optimal placement for a label, in the absence of any further information (see
Section 4). The process noise parameter c controls the flexibility of the filter. Larger
process noise results in a more responsive filter that quickly captures major changes in
the distribution, but allows the label to jitter.

4 Placement control
The filter state generated by the tracking process describes the overall fitness of loca-
tions for label placement. However, real applications require more control over the label

Lecture Notes in Computer Science 5

maximum

Fig. 3. Example of a directional contraint. The first column shows the constraint images, the
second the constrained filter state, and the last the resulting location.

location. Depending on the type of label different constraints need to be enforced on the
label position. Thanedar and Höllerer [13] give a short taxonomy of possible labels in
video overlays. Our method supports all of these label types.

To enforce a constraint on the location of a label, the application designer specifies
a constraint image C(x, y) that describes the suitability distribution of placing a label
at a certain location. The constraint image is then multiplied with the filter state to
yield a constrained filter state. The location of the maximum of the latter is the optimal
placement for the associated label.

Such constraint images can either be static or changing over time depending on the
type of label. For example, to place an annotation close to a tracked object an application
multiplies a ring-like distribution around the object location with the filter state (see
Fig.2). The resulting maximum and hence label will lie in an uninteresting part of the
image near, but not too close, to the object being labelled. A directional constraint places
the label in the approximate direction of the visible arrow on the marker (see Fig.3).

To place “screen-stabilised” (fixed) labels in one of a set of possible locations, a
static constraint image is constructed that only contains support for the desired label
locations. Again, the maximum of the resulting constrained suitability distribution is
one of the chosen locations.

Even with these constraints, if large areas of the image are uninteresting, then there
will be many equally suitable locations for the label, which can cause the label to jump
around. To prevent this, a constraint is used which increases the value of the constrained
filter at the previous location of the label. If this position is stabilised relative to the
marker position, then this will bias the label towards moving smoothly around with the
marker. If the absolute position of the label is used, the bias will be towards the label
staying in the same place on the screen.

Avoiding overlap of multiple labels also becomes possible. A simple greedy algo-
rithm can operate on a ranked list of labels: the first label is placed at the maximum
location of its filter state (or a constrained filter state). The states for the remaining la-
bels are then modified to discourage placement of subsequent labels in locations that
could result in overlap with the first one. The modified state is then the input for placing
the next label. The iterative modification of the filter states accumulates the information
about all placed labels and constrains the placement of new ones to unused areas.

5 Results
To demonstrate the results of our automated label placement method, we created a small
information browsing application for a hand-held AR system. A tablet PC with a 1GHz

6 Edward Rosten, Gerhard Reitmayr and Tom Drummond

(a) (b) (c) (d)
Fig. 4. Example of the dynamic behaviour. (a) A label is placed in an uninteresting position. As a
person moves into the view (b), the label jumps to another location (c). The weak position prior
prevents the label from quickly jumping back to the previous position (d).

Pentium M processor and a Firewire camera mounted to its back becomes a lens-like
tool to view annotations on real objects and locations in our lab (see Fig.1). To track
objects and locations we employ the ARToolkit [17] library and a set of markers placed
in the environment on interesting objects such as a printer. The system works at video
frame rate of 30 fps recording the full 640 × 480 image but operating on quarter-sized
images (320 × 240 pixels) for feature detection and filter representations. In this con-
figuration, the system uses 17% of the available computing time.

When a marker becomes visible in the camera view, a corresponding label is placed
next to it in an area free of any interesting features (see Fig.4 (a)). The distance to
the marker is controlled by a circular constraint as described in section 4. The label is
connected by a follower-line to the centre of the marker to disambiguate the association.
As the tablet is moved about labels typically stay in the same location in the window
to avoid unnecessary movement. However, if a label starts to occlude interesting image
features it jumps to a different location with less overlap (see Fig.4 (b,c)). In general
labels appear stable but can change their location instantly without any interpolation
between locations, if required. The display also contains screen-stabilised information
on the lab which is placed in one of the four screen corners.

Table 1 shows the average time spent calculating label placement for our demon-
stration system. All of the per-label costs are streaming operations on large quantities of
pixel data, and so could be further optimised exploiting a streaming instruction set such
as SSE2. Nevertheless, our portable C++ implementation exhibits good performance.

For real-time operation the label placement does not need to be computed for each
frame, since large changes in label position happen infrequently. Therefore, another
performance improvement consists in computing label placements only for every nth

frame and distribution computation over the intermediary frames to reduce the per-
frame computation cost to 1/nth of the total.

6 Conclusions

Our method implements a straightforward, yet flexible approach to determining anno-
tation locations for overlays of live video images. Processing time per frame is minimal
making it appropriate for inclusion into mobile and hand-held augmented reality sys-
tems that are constrained in terms of computing power. The bulk of the processor time is
still left for other tasks such as tracking or interaction management. The non-parametric
tracking of candidate locations can be tuned to select between slow or fast reaction to
image changes or to prefer past locations over new ones. The complete modelling of

Lecture Notes in Computer Science 7

Time (ms)
Per-frame cost Feature detection 1.76

Integral image 0.65
Per-label cost Suitability measurement 1.03

Filter measurements 0.63
Insert constraint 0.51

Total cost For one label 4.58
For n labels 2.41 + 2.17n

Cost per frame over 10 frames 0.46

Table 1. Timings for various steps of the algorithm. A single precomputed constraint is used.

state via a non-parametric representation captures the problem’s multi-modal proper-
ties and allows for instant jumps to different locations. The inclusion of constraints
gives application designers a flexible way to define label behaviour.

The underlying assumption that features appear predominantly in visually interest-
ing areas is the key to the simplicity of the method. The assumption breaks down for
feature rich areas of no importance to the user or task at hand. However, as long as there
are some image regions with few features the label will be placed in a good position.

Direct comparisions to other methods described in section 2 are difficult, because
none exhibit the same properties. Either they use models that include all interesting
objects that should not be occluded, or they do not operate causally in that they optimise
label locations using frames yet to be shown. The later can avoid surprising jumps, but
is not applicable in real-time.

The presented approach is also applicable to general video feeds, but our work fo-
cuses on mobile augmented reality applications. Here the real-time constraints, limited
availability of tracking solutions for model based annotation placement and ubiqui-
tous use of video see-through displays match the features of the proposed method very
closely. However, the method could also be adapted to optical see-through displays
through the use of a calibrated camera that captures images that match the user’s view.

An example video of a walk through our lab with annotations is available in the
supplementary videos, and the FAST corner detection code is available from
http://savannah.nongnu.org/projects/libcvd.

A FAST feature detection

We present here the FAST (Features from Accelerated Segment Test) feature detector.
This is sufficiently fast that it allows on-line operation of the label placement system.
A test is performed for a feature at a pixel p by examining a circle of 16 pixels (a
Bresenham circle of radius 3) surrounding p. A feature is detected at p if the intensities
of at least 12 contiguous pixels are all above or all below the intensity of p by some
threshold t. This is illustrated in Fig.5. The test for this condition can be optimised by
examining pixels 1 and 9, then 5 and 13, to reject candidate pixels more quickly, since a
feature can only exist if three of these test points are all above or below the intensity of
p by the threshold. With this optimisation the algorithm examines on average 3.8 pixels
per location on a sample video sequence.

8 Edward Rosten, Gerhard Reitmayr and Tom Drummond

15

11
10

16

14
13
12

1 2

9 8
7

6
5
4

3

C

Fig. 5. FAST Feature detection in an image patch. The highlighted squares are the pixels used
in the feature detection. The pixel at C is the centre of a detected corner: the dashed line passes
through 12 contiguous pixels which are brighter than C by more than the threshold.

References

1. Azuma, R.T.: A survey of augmented reality. Presence - Teleoperators and Virtual Environ-
ments 6 (1997) 355–385

2. Rekimoto, J.: Navicam: A magnifying glass approach to augmented reality. PRESENCE -
Teleoperators and Virtual Environments 6 (1997) 399–412

3. The Map-Labeling Bibliography. http://i11www.ira.uka.de/ awolff/map-
labeling/bibliography/ (2005)

4. Christensen, J., Marks, J., Shieber, S.: An empirical study of algorithms for point-feature
label placement. ACM Transactions on Graphics 14 (1995) 203–232

5. Azuma, R., Furmanski, C.: Evaluating label placement for augmented reality view manage-
ment. In: Proc. ISMAR 2003, Tokyo, Japan, IEEE (2003) 66–75

6. Sportvision: 1st & Ten. http://www.sportvision.com/ (2005)
7. Sportvision: Race F/X. http://www.sportvision.com/ (2005)
8. Feiner, S., MacIntyre, B., Haupt, M., Solomon, E.: Windows on the world: 2D windows for

3D augmented reality. In: Proc. UIST’93, Atlanta, GA, USA (1993) 145–155
9. Julier, S., Lanzagorta, M., Baillot, Y., Rosenblum, L., Feiner, S., Höllerer, T.: Information

filtering for mobile augmented reality. In: Proc. ISAR 2000, Munich, Germany, IEEE and
ACM (2000) 3–11

10. Bell, B., Feiner, S., Höllerer, T.: View management for virtual and augmented reality. In:
Proc. UIST’01, Orlando, Florida, USA, ACM (2001) 101–110

11. Gabbard, J.L., Swan II, J.E., Hix, D., Schulman, R.S., Lucas, J., Gupta, D.: An empiri-
cal user-based study of text drawing styles and outdoor background textures for augmented
reality. In: Proc. IEEE VR 2005, Bonn, Germany, IEEE (2005) 11–18

12. Leykin, A., Tuceryan, M.: Automatic determination of text readability over textured back-
grounds for augmented reality systems. In: Proc. ISMAR 2004, Arlington, VA, USA, IEEE
(2004) 224–230

13. Thanedar, V., Höllerer, T.: Semi-automated placement of annotations on videos. Technical
Report #2004-11, UC, Santa Barbara (2004)

14. Harris, C.J., Stephens, M.: A combined corner and edge detector. In: Proc. of the 4th Alvey
Vision Conference. Number 4, Manchester, UK, Alvery Vision Conference (1988) 147–151

15. Smith, S., Brady, J.: SUSAN - a new approach to low level image processing. Int. Journal
of Computer Vision 23 (1997) 45–78

16. Viola, P., Jones, M.: Robust real-time object detection. Int. Journal of Computer Vision
(2002)

17. Kato, H., Billinghurst, M.: Marker tracking and HMD calibration for a video-based aug-
mented reality conferenencing system. In: Proc. IWAR’99, San Francisco, CA, USA, IEEE
CS (1999) 85–94

